top of page

Contact Heat and Cold Evoked Potentials

Cold evoked potential thermal stimlator
CEPS.png
  • De Keyser R., van den Broeke E., Courtin A., Dufour A., Mouraux A. (2018). Event-related brain potentials elicited by high-speed cooling of the skin: A robust and non-painful method to assess the spinothalamic system in humans. Clinical Neurophysiology. 129(5), 1011-1019. 

​

  • Lenoir C., Algoet M. & Mouraux A. (2018). Deep continuous theta burst stimulation of the opercula-insular cortex selectively affects Adelta fibre heat pain. The Journal of Physiology. 596(19), 4767-4787.​

 

  • Mulders D., de Bodt C., Lejeune N., Courtin A., Liberati G., Verleysen M., Mouraux A. (2020). Dynamics of perception and EEG signals triggered by tonic warm and cool stimulation. Plos One, 15(4).

​

  • van Neerven S.G.A. and Mouraux A. (2020). Capsaicin-induced skin desensitization differentially affects A-delta and C-fiber-mediated heat sensitivity. Frontiers in Pharmacology. 11, 1-15

​

  • Leone C., Di Lionardo A., Diotallevi G., Mollico C, Di Pietro G., Di Stephano G., La Cesa S., Cruccu G., Truini A. (2020). Conduction velocity of the cold spinal pathway in healthy humans. European Journal of Pain. Online ahead of print doi: 10.1002/ejp.1640.

​

  • Liberati G., Mulders D., Algoed M., van den Broeke E., Ferrao Santos S., Géraldo Ribeiro Vaz J., Raftopoulos C., Mouraux A. (2020). Insular response to transient painful and non-painful thermal and mechanical spinothalamic stimuli recorded using intracerebral EEG. Scientific Reports. 10:22319, 1-14.
     

  • Courtin A. & Mouraux A. (2021). Combining Topical Agonists With the Recording of Event-Related Brain Potentials to Probe the Functional Involvement of TRPM8, TRPA1 and TRPV1 in Heat and Cold Transduction in the Human Skin. The Journal of Pain. Epub, 1-18.

 

  • De Schoenmacker I., Archibald J., Kramer J.L.K. & Hubli M. (2022). Improved acquisition of contact heat evoked potentials with increased heating ramp. Scientific Reports, 12, 925.

​

  • Fabig S.C, Kersebaum D., Lassen J., Sendel Manon, Jendral S., Muntan A., Baron R. & Hüllemann P. (2021). A modality-specific somatosensory evoked potential test protocol for clinical evaluation: A feasibility study. Clinical Neurophysiology. 132, 3104-3115.

​

  • Lejeune N., Petrosova E., Frahm K.S, Mouraux A. (2023). High-speed heating of the skin using a contact thermode elicits brain responses comparable to CO2 laser-evoked potentials. Clinical Neurophysiology. 146, 1-9.

​

  • Scheuren P.S., Nauer N., Rosner J., Curt A., Hubli M. (2022) Cold evoked potentials elicited by rapid cooling of the skin in young and elderly healthy individuals. Science Report, 12:4137.

Clinical applications

Facial Neuropathic Pain

Figure Leone.png

Vertex complex (N2-P2 recorded at Cz-A1) of cold evoked potentials (CEP, blue traces) and laser evoked potentials (LEP, red traces) after stimulation of the healthy and the affected side. Each trace represents the average of 20-30 trials. Dotted lines indicate the stimulus onset. Whereas the laser stimulation of the affected side yielded dampened, though still present, scalp potentials, cold stimulation failed to evoke reproducible scalp potentials. 

  • Leone C., Dufour A., Di Stefano G., Fasolino A., Di Lionardo A., La Cesa S., Galosi E., Valeriani M.,

    Nolano M., Cruccu G. Truini A. (2019). Cooling the skin for assessing small-fibre function. Pain. 160(9), 1967-1975

  • Perchet C., Hagiwara K., Salameh C., Garcia-Larrea L. (2023). Cold-evoked potentials in clinical practice: A head-to-head contrast with laser-evoked responses. European Journal of Pain (0) 1-17.

High sensitivity QST with the adaptive staircase method 

quantitative sensory testing threshold measurements

Thanks to very brief stimulations (50 ms), an adaptative staircase method is now possible. Experiments using this method show that the cold threshold can be as small as 0.2°C.

  • Lithfous S., Després O, Pebayle T. & Dufour A. (2019). Modification of descending analgesia in aging: critical role of the prefrontal cortex.Clinical Journal of Pain. 35(1), 23-30. 

​

  • Després O, Lithfous S, Pebayle T. Casadio C. & Dufour A. (2019). Effects of thermosensory aging well demonstrated by cold stimulation with high temporal resolution.Muscle Nerve. 60(2)., 141-146.

​

  • Lithfous S., Després O., Pebayle T., Casadio C. & Dufour A. (2020). Accurate determination of the cold detection threshold with high-speed cooling of the skin. Pain Medicine. online ahead of print.

Thermal Grill Illusion

  • Schaldmose E., Raaschou-Nielsen L., Böhme R., Finnerup N. & Fardo F.  (2023). It is one or the other: No overlap between healthy individuals perceiving thermal grill illusion or paradoxical heat sensation. ENeuroscience Letters. 802, 1-7. â€‹

Modeling of thermal diffusion in the skin

  • Dufour A., Després O, Pebayle T. & Lithfous S. (2020). Thermal sensitivity in humans at the depth of thermal receptor endings beneath the skin: validation of a heat transfer model of the skin using high-temporal resolution stimuli. European Journal of Applied Physiology. 120, 1509-1518. â€‹

Animal Research

  • Vestergaard M, Carta M, Güney G, Poulet JFA. The cellular coding of temperature in the mammalian cortex. Nature. 2023 Feb;614(7949):725-731. doi: 10.1038/s41586-023-05705-5. Epub 2023 Feb 8. 

​

  • Gieré C., Melchior M., Dufour A., Poisbeau P. (2021).  Spinal integration of hot and cold nociceptive stimuli by wide dynamic range neurons in anesthetized adult rats. Pain Reports. Epub.

bottom of page